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Introduction 
 

Programmable shaders are a powerful way to describe the interaction of surfaces with light, as 
evidenced by the success of programmable shading models like RenderMan and others.  As graphics 
hardware evolves beyond the traditional “fixed function” pipeline, hardware designers are looking to 
programmable models to empower the next generation of real-time content.  To allow content to 
interface with programmable hardware, we have designed shader extensions to OpenGL which operate 
at the vertex and fragment levels. In these notes, we will outline the behavior of the 
ATI_vertex_shader and ATI_fragment_shader extensions as examples of programmable 
interfaces designed for real-time graphics.  While we will use the syntax of these two extensions 
throughout these notes, we will discuss several issues of general interest to anyone who is specifying, 
implementing or using a programmable 3D graphics API in a production environment. 
 While we expect many programmers to write to these extensions directly in C, we also expect to 
see a set of metaprogramming tools made available to drive the models.  The ATI_vertex_shader API, 
for example, turns out to look very much like the intermediate representation in the Stanford Real-time 
Shading Language [Proudfoot01].  By providing some support for subroutines, ATI_vertex_shader 
also allows an application to separate out light, surface and atmospheric shaders, which has proven to be 
useful in other models like Cook’s Shade Trees [Cook84] and Pixar’s RenderMan [Upstill88] 
[Hanrahan90].  Although ATI_vertex_shader and ATI_fragment_shader are currently separate 
extensions, they are designed to have similar interfaces and to eventually be merged into one model. 
 

Goals of the ATI_vertex_shader and ATI_fragment_shader extensions: 
 

• Enable programmability in the graphics pipeline 
• Easily migrate to future hardware designs 
• Work together in a clean and intuitive way 
• Have enough generality to be implemented on a wide range of hardware, thus 

encouraging multi-vendor interest and support 
• Address complexity issues by providing some subroutine and looping capabilities 
• Free apps from the responsibility for managing constant and variable storage space 
• Prevent app from having to re-implement a part of the pipe that it isn’t modifying 

o Shader library provides pluggable functionality for lighting, texture coordinate 
generation, etc. 
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Vertex operations with ATI_vertex_shader 
 
 
 

Like other programmable 3D graphics 
APIs, ATI_vertex_shader allows substitution of 
a flexible per-vertex programming model into the 
graphics pipeline in place of the traditional fixed-
function pipeline (Figure 1).  This can be toggled 
so that primitives which do not require the 
additional flexibility of the programmable 
pipeline can use the existing fixed functionality. 
 

As shown in Figure 1, vertex shading 
happens after higher-order surface tessellation.  
This allows the shading operations to operate on 
the “high frequency” vertex data coming out of a 
tessellation stage such as a Curved PN Triangle 
implementation [Vlachos01].  In the case of 
vertex Phong lighting computations, this results in 
more well-defined specular highlights. 

 
The vertex shading stage feeds into the 

clipping stage, which applies frustum and user 
clip planes in clip space.  These clipped triangles 
are then passed to the triangle setup stage, 
followed by rasterization using 
ATI_fragment_shader. 
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Figure 1 ATI_vertex_shader and 
ATI_fragment_shader in the graphics pipeline

Creating a shader with ATI_vertex_shader 
 

In ATI_vertex_shader, creation of a vertex shader is done in the usual OpenGL manner, with 
the implementation generating a number of shader names that an application can bind for use or delete 
when no longer required: 
 

uint glGenVertexShadersATI (GLuint range)
void glBindVertexShaderATI (GLuint id)
void glDeleteVertexShaderATI(GLuint id)

 
Specification of a vertex shader is bracketed by calls to glBeginVertexShaderATI() and 

glEndVertexShaderATI(), much like a display list: 
 

glBindVertexShaderATI(simpleVertexShader);
glBeginVertexShaderATI();
// declare variables, instructions etc
glEndVertexShaderATI(); 
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When the application wishes to use a given vertex shader in place of the fixed function 

transformation pipeline, the shader is bound, and programmable shading is enabled as follows: 
 

glBindVertexShaderATI(simpleVertexShader);
glEnable(GL_VERTEX_SHADER_ATI); 

 
 To switch back to the fixed function transformation pipeline, the application disables vertex 
shading: 

glDisable(GL_VERTEX_SHADER_ATI); 
 
Simple Vertex Shader 
 
 Before describing the instruction set, storage types and other aspects of the programming model, 
we show a simple shader to give a sense of its structure: 
 
//Initialize global parameter bindings
Modelview = glGenDataATI (GL_MATRIX_ATI, GL_INVARIANT_ATI, GL_FULL_RANGE_ATI, 1);
Projection = glGenDataATI (GL_MATRIX_ATI, GL_INVARIANT_ATI, GL_FULL_RANGE_ATI, 1);
Vertex = glGenDataATI (GL_VECTOR_ATI, GL_VARIANT_ATI, GL_FULL_RANGE_ATI, 1);
Normal = glGenDataATI (GL_VECTOR_ATI, GL_VARIANT_ATI, GL_FULL_RANGE_ATI, 1);

glBindParameterATI (GL_MODELVIEW_MATRIX, Modelview);
glBindParameterATI (GL_PROJECTION_MATRIX, Projection);
glBindParameterATI (GL_CURRENT_VERTEX_ATI, Vertex);
glBindParameterATI (GL_CURRENT_NORMAL_ATI, Normal);

glBindVertexShaderATI (xform); //a simple diffuse shader
glBeginVertexShaderATI();
{

float direction[4] = { 0.57735f, 0.57735f, 0.57735f, 0.0f}; //direction vector (1,1,1) normalized
float material[4] = { 1.00000f, 1.00000f, 0.00000f, 1.0f}; //yellow diffuse material
float ambient[4] = { 0.20000f, 0.20000f, 0.20000f, 0.0f}; //scene ambient light intensity
GLuint lightDirection;
GLuint diffMaterial;
GLuint sceneAmbient;
GLuint eyeVertex;
GLuint clipVertex;
GLuint eyeNormal;
GLuint intensity;

// generate local values
eyeVertex = glGenDataATI (GL_VECTOR_ATI, GL_LOCAL_ATI, GL_FULL_RANGE_ATI, 1);
clipVertex = glGenDataATI (GL_VECTOR_ATI, GL_LOCAL_ATI, GL_FULL_RANGE_ATI, 1);
eyeNormal = glGenDataATI (GL_VECTOR_ATI, GL_LOCAL_ATI, GL_FULL_RANGE_ATI, 1);
intensity = glGenDataATI (GL_VECTOR_ATI, GL_LOCAL_ATI, GL_FULL_RANGE_ATI, 1);

// generate constant values
lightDirection = glGenDataATI (GL_VECTOR_ATI, GL_LOCAL_CONSTANT_ATI, GL_FULL_RANGE_ATI, 1);
diffMaterial = glGenDataATI (GL_VECTOR_ATI, GL_LOCAL_CONSTANT_ATI, GL_FULL_RANGE_ATI, 1);
sceneAmbient = glGenDataATI (GL_VECTOR_ATI, GL_LOCAL_CONSTANT_ATI, GL_FULL_RANGE_ATI, 1);

glSetShaderStateATI (lightDirection, GL_FLOAT, direction);
glSetShaderStateATI (diffMaterial, GL_FLOAT, material);
glSetShaderStateATI (sceneAmbient, GL_FLOAT, ambient);

glShaderOp2ATI (GL_OP_MULTIPLY_MATRIX_ATI, eyeVertex, Modelview, Vertex);
glShaderOp2ATI (GL_OP_MULTIPLY_MATRIX_ATI, clipVertex, Projection, eyeVertex);
glShaderOp1ATI (GL_OP_EXPORT_ATI, GL_OUTPUT_VERTEX_ATI, clipVertex);

// assumes no scaling/shearing in modelview matrix
glShaderOp2ATI (GL_OP_MULTIPLY_MATRIX_ATI, eyeNormal, Modelview, Normal);
glShaderOp2ATI (GL_OP_DOT3_ATI, intensity, lightDirection, eyeNormal);
glShaderOp2ATI (GL_OP_ADD_ATI, intensity, sceneAmbient, intensity);
glShaderOp2ATI (GL_OP_MUL_ATI, intensity, diffMaterial, intensity);

glShaderOp1ATI (GL_OP_EXPORT_ATI, GL_OUTPUT_COLOR0_ATI, intensity);
}
glEndVertexShaderATI(); 
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Vertex Shader Structure 
 

The only operations allowed between glBeginVertexShaderATI() and 
glEndVertexShaderATI() are glGenDataATI(), glSetShaderStateATI(), glShaderOpxATI(), 
glSwizzleATI() and glWriteMaskATI(). 
 

As you can probably infer from the sample code above, ATI_vertex_shader is a 4D vector 
programming language.  We will now describe the use of local constants and variables in the language. 
 
Local Constants and Variables 
 
 Like any high level language, a shader written using ATI_vertex_shader must declare its 
constants and variables.  This is done with the glGenDataATI() entrypoint: 
 
uint glGenDataATI(enum datatype, enum storagetype, enum range, uint components)

 
 Each constant or variable can be of data type GL_SCALAR_ATI, (4D) GL_VECTOR_ATI or (4x4) 
GL_MATRIX_ATI and can have a storage type of GL_VARIANT_ATI, GL_INVARIANT_ATI, 
GL_LOCAL_CONSTANT_ATI or GL_LOCAL_ATI.  We will discuss variants later—for now, we will focus on 
local variables and constants.  The simple diffuse lighting shader above creates 4 local vector variables 
and 3 local vector constants.  The four variables are not initialized, while the three constants are 
initialized using the glSetShaderStateATI() entrypoint: 
 

glSetShaderStateATI (lightDirection, GL_FLOAT, direction);
glSetShaderStateATI (diffMaterial, GL_FLOAT, material);
glSetShaderStateATI (sceneAmbient, GL_FLOAT, ambient); 

 
 After initialization, the shader is free to read from any of these constants, though it may not write 
to them.  Reading from either of the declared variables without first writing to it will result in failed 
creation of the shader and glEndVertexShader()will return an error. 
 
 In addition to the ability to declare generic constants and variables, a vertex shader can access 
useful OpenGL state by binding variables or constants to OpenGL states.  This is convenient for 
applications that mix use of the fixed-function vertex pipeline with use of ATI_vertex_shader or just 
as a simple means for managing common quantities such as a modelview matrix. 
 
Accessing OpenGL State 
 
 Once a variable or constant has been declared, it may be bound to some specific OpenGL state 
for convenience.  Relevant OpenGL state may be bound to a constant as shown in the 
ATI_vertex_shader spec.  There are special entrypoints for binding state related to lighting, materials, 
texgen and texture contexts since these are contextual states. OpenGL state that is contextual is accessed 
through these four special context-sensitive parameter binding entrypoints in order to utilize the existing 
enums and prevent an enum explosion. 
 

void glBindParameterATI (enum value, uint name) 
void glBindLightParameterATI (enum light, enum value, uint name)
void glBindMaterialParameterATI (enum face, enum value, uint name)
void glBindTexGenParameterATI (enum coord, enum value, uint name)
void glBindTextureParameterATI (enum coord, enum value, uint name)
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Instruction set 
 

There are 25 opcodes available in ATI_vertex_shader, as shown in Table 1 below: 

OP_EXPORT_ATI OP_INDEX_ATI OP_NEGATE_ATI

OP_MOV_ATI OP_MULTIPLY_MATRIX_ATI OP_DOT3_ATI

OP_DOT4_ATI OP_MUL_ATI OP_ADD_ATI

OP_MADD_ATI OP_FRAC_ATI OP_MAX_ATI

OP_MIN_ATI OP_SET_GE_ATI OP_SET_LT_ATI

OP_CLAMP_ATI OP_FLOOR_ATI OP_ROUND_ATI

OP_EXP_BASE_2_ATI OP_LOG_BASE_2_ATI OP_POWER_ATI

OP_RECIP_ATI OP_RECIP_SQRT_ATI OP_SUB_ATI

OP_CROSS_PRODUCT_ATI

Table 1 - ATI_vertex_shader opcodes 
 
 As shown in the sample shader above, different operations have different numbers of arguments.  
This is handled in the usual OpenGL manner with the glShaderOpxATI() entrypoints: 
 

glShaderOp1ATI (enum op, uint res, uint arg1)
glShaderOp2ATI (enum op, uint res, uint arg1, uint arg2)
glShaderOp3ATI (enum op, uint res, uint arg1, uint arg2, uint arg3) 

 
Micro Operations versus Instructions 
 
 As in any programmable processor, a single instruction may translate into some number of micro 
operations, clock cycles etc.  Micro op counts are implementation details that we expect to vary between 
vendors and generations of hardware, much like they do for CPUs. 
 
Argument Swizzling and Modification 
 

Components of arguments may be individually swizzled and/or negated.  Literal 1’s and 0’s may 
also be substituted for any component.  This is expressed with the glSwizzleATI() entrypoint.  For 
example, to replicate the X component of an argument across all 4 components, one would use the 
following syntax: 
 

glSwizzleATI (res, in, X_ATI, X_ATI, X_ATI, X_ATI);

 
To negate only the X component, one would use: 

 
glSwizzleATI (res, in, NEGATIVE_X_ATI, Y_ATI, Z_ATI, W_ATI);

 
All 11 argument modifiers are shown in Table 2 below.  Any combination of these arguments 

may be passed to glSwizzleATI(). 
 

X_ATI Y_ATI Z_ATI W_ATI
NEGATIVE_X_ATI NEGATIVE_Y_ATI NEGATIVE_Z_ATI NEGATIVE_W_ATI
ZERO_ATI ONE_ATI NEGATIVE_ONE_ATI

Table 2 – Argument modifiers for ATI_vertex_shader 
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Write masks 
 

It is possible to mask writes to destination registers using the glWriteMaskATI() entrypoint.  
Only GL_TRUE or GL_FALSE can be passed as the last four parameters to glWriteMaskATI().  For 
example, to write only to the X component of the destination, use the following syntax: 
 

glWriteMaskATI (res, in, GL_TRUE, GL_FALSE, GL_FALSE, GL_FALSE);

 
Swizzles and Write Masks as Free Instructions 
 
 Although the swizzle and write mask operations are expressed as discrete operations, we expect 
implementations of ATI_vertex_shader to collapse them into what amount to modifiers to the 
operations performed by a call to glShaderOpxATI().  For example, we expect the following kind of 
call sequence to collapse into one hardware instruction, making the swizzles and write masks “free”: 
 

glSwizzleATI (swarg1 , arg1, ... );
glSwizzleATI (swarg1 , arg1, ... );
glSwizzleATI (swarg1 , arg1, ... );
glShaderOp3ATI (MAD, winput, sarg1, sarg2, sarg3);
glWriteMaskATI ( output, winput ); 

 
 After exploring ways to express these swizzles and write masks in the glShaderOpxATI() 
entrypoints, we determined that doing so would result in absurdly verbose entrypoints as well as 
enumerant explosion.  As a result, we settled on the approach described above.  This is manageable for 
the C programmer and will surely be expressed very concisely in the metaprogramming tools that will 
layer on top of ATI_vertex_shader. 
 
Variants: Custom Vertex Attributes 
 
 The simple shader above uses traditional OpenGL inputs with a defined semantic meaning; 
specifically vertex position and normal.  Here, we will explain how we allow the application to specify 
custom vertex attributes via immediate mode and vertex array interfaces.  Earlier, we showed how 
glGenDataATI() can be used to declare local constants and variables.  The same entrypoint is also used 
to declare custom vertex attributes, which we call variants.  To declare a single full-range vector variant: 
 

var1 = glGenDataATI (GL_VECTOR_ATI, GL_VARIANT_ATI, GL_FULL_RANGE_ATI, 1);

 
 If rendering using immediate mode, the application can specify the values of this variant for each 
vertex using glSetVariantATI().  If rendering with vertex arrays, the application can specify the 
values of the variant in the following manner: 

glSetVariantPointerATI (var1, stride, type, addr)
glEnableVariantClientStateATI (var1);
// render
glDisableVariantClientStateATI (var1) 

 
 The variant var1 can be read in the vertex shader, but may not be written.  It can be thought of as 
another interpolated quantity like position or normal, but with no inherent semantic meaning. 
 
Data Types, Normalized Range and Full Range 
 

When specifying data to OpenGL, the data may be defined to be a tuple of any of the following 
types: GL_DOUBLE, GL_FLOAT, GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT 
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or GL_UNSIGNED_INT.  Clearly, a variant may also take any of these types.  For variant types other than 
GL_DOUBLE or GL_FLOAT, it is convenient to have the flexibility to specify whether the data is intended 
to represent a range from -1.0 to 1.0 or the native range of the data type (i.e. -128 to 127 for GL_BYTE).  
For example, an application using the constant store as a palette of matrices for character animation 
might use a number of full-range ubyte variants to index into the palette.  In another situation, an 
application may realize storage and bandwidth savings by quantizing a normalized vector component of 
a vertex.  In this case, the application would use a normalized-range byte variant.  When reading from 
the normalized variant in the vertex shader, the data can be assumed to be in the range of -1.0 to 1.0.  
This is analogous to the way that OpenGL currently handles the differences between colors, texture 
coordinates, vertices and normals. 
 
Vertex Shader Outputs 
 

The contents of special output registers constitute the output of the vertex shader.  The 
ATI_vertex_shader extension defines a set of output registers that may be written into by the vertex 
shader, but may not be read.  These include the clip-space position of the vertex (4D), two 4D colors, a 
scalar fog factor and some number of 4D texture coordinates.  (Point size for point sprites, and any other 
special vertex shader outputs are specified in their own separate extensions.)  Any output registers that 
are not written to by the vertex shader code are undefined and should not be consumed in the fragment 
shader.  As an example, an implementation that supports six textures could consume the contents of the 
following 10 output registers in the fragment shader: 
 

OUTPUT_VERTEX_ATI OUTPUT_FOG_ATI

OUTPUT_COLOR0_ATI OUTPUT_COLOR1_ATI

OUTPUT_TEXTURE_COORD0_ATI OUTPUT_TEXTURE_COORD1_ATI
OUTPUT_TEXTURE_COORD2_ATI OUTPUT_TEXTURE_COORD3_ATI
OUTPUT_TEXTURE_COORD4_ATI OUTPUT_TEXTURE_COORD5_ATI

Table 3 – Vertex Shader Output Registers 
 
 For example, the simple shader illustrated earlier transforms the input position into a local 
variable and then exports that local variable with the GL_OP_EXPORT_ATI operation: 
 

glShaderOp1ATI (GL_OP_EXPORT_ATI, GL_OUTPUT_VERTEX_ATI, clipVertex);

 
 After performing lighting calculations, the shader exports another local variable to color0 of the 
vertex: 

glShaderOp1ATI (GL_OP_EXPORT_ATI, GL_OUTPUT_COLOR0_ATI, intensity);

 
Clip Planes 
 

As shown in Figure 1, the output of the vertex shader is in clip-space.  This means that frustum 
and user clip planes can be applied to primitives whose vertices are in this space since eye-space is now 
undefined.  The algorithm is the same, except the half-space is now defined as: 

 
                                  [xclip ] 

[p'1 p'2 p'3 p'4]   Pinv [yclip ]  ≥  0 
[zclip ] 
[wclip] 
 

Where P is the projection matrix and xclip, yclip, zclip, and wclip are the clip-space vertex 
coordinates. When P is singular, the result of clipping is undefined. 
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Case Study: Using a subroutine for lighting 
 

The functionality illustrated in the sample shader above can be simplified further by the use of a 
subroutine to compartmentalize the lighting calculations.  The code below illustrates 
ATI_vertex_shader’s ability to support inline subroutines and unrolled loops. 
 
//
// Function to compute diffuse illumination for a point light
//
// This takes the eye-space normal, vertex, and light position.
// It computes the intensity of the light, modulates by the light color,
// and adds to the accumulated intensity
//
////////////////////////////////////////////////////////////////////////
void PointDiffuse( GLuint light, GLuint normal, GLuint vertex, GLuint color,

GLuint intensity)
{

GLuint lightDirection;
GLuint lightIntensity

//generate local values
lightDirection = glGenDataATI( GL_VECTOR_ATI, GL_LOCAL_ATI,

GL_FULL_RANGE_ATI, 1);
LightIntensity = glGenDataATI( GL_SCALAR_ATI, GL_LOCAL_ATI,

GL_FULL_RANGE_ATI, 1);

glTransformOp2ATI( GL_OP_SUBTRACT_ATI, lightDirection, light, vertex);
glTransformOp2ATI( GL_OP_DOT3_ATI, lightIntensity, light, normal );

glTransformOp3ATI( GL_OP_MADD_ATI, intensity, lightIntensity, color,
intensity);

}

void DefineSimpleDiffuseShader( int numLights, GLuint *lightPos,
GLuint *lightColor, . . . )

{
glBeginVertexShader();
//Setup local variables
. . .

//Transform components to eye-space
. . .

//Set ambient light value
. . .

for ( int i = 0; i < numLights; i++)
{

PointDiffuse( lightPos[i], eyeNormal, eyeVertex, lightColor[i],
SigmaLight );

}

//Modulate light with material
. . .

//Output components
. . .
glEndVertexShader();

}
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Fragment operations with ATI_fragment_shader 
 

Like its counterpart ATI_vertex_shader, the ATI_fragment_shader extension provides a 
means for inserting a flexible per-pixel programming model into the graphics pipeline in place of the 
traditional multitexture pipeline (Figure 1).  This can be toggled so that primitives which do not require 
the additional flexibility of the programmable pipeline can use the existing fixed functionality provided 
by extensions such as ARB_multitexture, ARB_texture_env_combine, EXT_texture_env_dot3 and 
others. 
 The ATI_fragment_shader extension provides a very general means of expressing fragment 
color blending and dependent texture address modification.  The programming model is a register-based 
model and the C syntax is similar to the ATI_vertex_shader extension described above.  The number 
of instructions, texture lookups, read/write registers and constants is queryable, to provide easy 
migration between hardware generations. 

One advantageous property of the model is a unified instruction set used throughout the shader.  
That is, the same instructions are provided when operating on address or color data.  In fact, the 
distinction between address and color data becomes somewhat meaningless in this setting.  Additionally, 
this unified approach gives application programmers a single instruction set to learn and eliminates the 
awkward CISC address shading “modes” found in other models.  It really is possible to “just do some 
math ops and look the result up in a texture.” 
 
 
Creating a shader with ATI_fragment_shader 
 

As in ATI_vertex_shader above, creation of a fragment shader is done in the usual OpenGL 
manner, with the implementation generating a number of shader names that an application can bind for 
use or delete when no longer required: 
 

uint glGenFragmentShadersATI (GLuint range)
void glBindFragmentShaderATI (GLuint id)
void glDeleteFragmentShaderATI(GLuint id)

 
As above, specification of a fragment shader is bracketed by calls to 

glBeginFragmentShaderATI() and glEndFragmentShaderATI(): 
 

glBindFragmentShaderATI(simpleFragmentShader);
glBeginFragmentShaderATI();
// declare variables, instructions etc
glEndFragmentShaderATI(); 

 
When the application wishes to use a given fragment shader in place of the multitexture pipeline, 

the shader is bound and programmable shading is enabled as follows: 
 

glBindFragmentShaderATI(simpleFragmentShader);
glEnable(GL_FRAGMENT_SHADER_ATI); 

 
 To switch back to the multitexture pipeline, the application disables fragment shaders: 
 

glDisable(GL_FRAGMENT_SHADER_ATI); 
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Sample Fragment Shader 
 
// Base/Bump 2D coords in tex coord 0
// Tangent space half angle in 3D tex coord 2
// Tangent space light vector in 3D tex coord 5
// Light’s Diffuse color set in constant 0 and specular color in constant 1

simpleFragmentShader = glGenFragmentShadersATI(1);
glBindFragmentShaderATI (simpleFragmentShader);
glBeginFragmentShaderATI();

glSampleMapATI ( 0, GL_INTERP_0_ATI); // Sample the N map (k in alpha)
glSampleMapATI ( 2, GL_INTERP_2_ATI); // Normalize H with a cube map

// N.H
glColorFragmentOp2ATI (GL_DOT3_ATI, GL_REG_2_ATI, GL_RED_BIT_ATI, GL_NONE,

GL_REG_0_ATI, GL_NONE, GL_BIAS_BIT_ATI|GL_2X_BIT_ATI,
GL_REG_2_ATI, GL_NONE, GL_BIAS_BIT_ATI|GL_2X_BIT_ATI);

// grab the k channel
glColorFragmentOp1ATI (GL_MOV_ATI, GL_REG_2_ATI, GL_GREEN_BIT_ATI, GL_NONE,

GL_REG_0_ATI, GL_ALPHA, GL_NONE);

// End of first pass
// Dependent texture reads to raise (N.H) to k power
glSampleMapATI ( 1, GL_INTERP_0_ATI); // base
glSampleMapATI ( 3, GL_REG_2_ATI); // (N.H)^k
glSampleMapATI ( 2, GL_INTERP_1_ATI); // Normalize L

// N.L
glColorFragmentOp2ATI (GL_DOT3_ATI, GL_REG_0_ATI, GL_NONE, GL_SATURATE_BIT_ATI,

GL_REG_0_ATI, GL_NONE, GL_BIAS_BIT_ATI|GL_2X_BIT_ATI,
GL_REG_2_ATI, GL_NONE, GL_BIAS_BIT_ATI|GL_2X_BIT_ATI);

// ((N.H)^k) * gloss)
glColorFragmentOp2ATI (GL_MUL_ATI, GL_REG_2_ATI, GL_NONE, GL_NONE,

GL_REG_3_ATI, GL_NONE, GL_NONE,
GL_REG_1_ATI, GL_ALPHA, GL_NONE);

// (N.L) * diffuse_color
glColorFragmentOp2ATI (GL_MUL_ATI, GL_REG_0_ATI, GL_NONE, GL_NONE,

GL_REG_0_ATI, GL_NONE, GL_NONE,
GL_CON_0_ATI, GL_NONE, GL_NONE);

// ((N.H)^k) * gloss) * specular_color
glColorFragmentOp2ATI (GL_MUL_ATI, GL_REG_2_ATI, GL_NONE, GL_NONE,

GL_REG_2_ATI, GL_NONE, GL_NONE,
GL_CON_1_ATI, GL_NONE, GL_NONE);

// Result = (N.L) * diffuse_color * base + ((N.H)^k) * gloss * specular_color)
glColorFragmentOp3ATI (GL_MAD_ATI, GL_REG_0_ATI, GL_NONE, GL_SATURATE_BIT_ATI,

GL_REG_0_ATI, GL_NONE, GL_NONE,
GL_REG_1_ATI, GL_NONE, GL_NONE,
GL_REG_2_ATI, GL_NONE, GL_NONE);

glEndFragmentShaderATI();

 
Fragment Shader Structure 
 

The only operations allowed between glBeginFragmentShaderATI() and 
glEndFragmentShaderATI() are glPassTexCoordATI(), glSampleMapATI(), 
glColorFragmentOpxATI(), glAlphaFragmentOpxATI() and glSetFragmentShaderConstantATI().  
The glSetFragmentShaderConstantATI() entrypoint may also be used outside of the fragment shader, 
to effectively specify constant parameters to the shader.  This is what is expected to be done in the 
sample shader above, as the shader assumes that the diffuse and specular colors of the given light source 
are stored in constants zero and one when the shader executes. 
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Registers, Constants and Interpolators 
 

Although the creation and management of fragment shaders is the same as vertex shaders, we 
have chosen not to abstract the constant and register management like we did in ATI_vertex_shader.  
This is because we expect hardware implementations to have far fewer registers and constants available 
at the fragment level than at the vertex level, necessitating more of a “hand-tuned” approach by content 
developers.  An implementation will support some number of read-only constants and read-write 
registers.  The number of constants and registers supported is queryable by passing 
NUM_FRAGMENT_REGISTERS_ATI or NUM_FRAGMENT_CONSTANTS_ATI to glGet().  The primary and 
secondary colors are also available as read-only interpolated data. 
 

Constants may be declared within a shader by making up to NUM_FRAGMENT_CONSTANTS_ATI 
calls to glSetFragmentShaderConstantATI() immediately after glBeginFragmentShader().  In this 
case, the constants override the constants that are part of the global OpenGL state during the time that 
the shader is bound.  Constants may be read at any point in the fragment shader, even if they are not 
declared within the shader. When not declared within the shader, the constants can be thought of as 
parameters to the shader.  In the sample shader above, the application is expected to set constant zero 
and one according to the properties of the light causing the surface bumps. 
 
Texture Sampling and Coordinate Routing 
 

Prior to performing arithmetic instructions in the fragment shader, maps may be sampled and 
texture coordinates may be routed into registers.  These operations are accomplished with the 
glPassTexCoordATI() and glSampleMapATI() operations. 
 
 
Instruction Set 
 
 ATI_fragment_shader provides for multiple shading passes separated by texture sampling. 
(This is not to be confused with multi-pass rendering, as the frame buffer is not updated between 
passes.)  The total number of shader passes provided by an implementation is a queryable value 
accessible through glGet. Additionally, the maximum number of operations allowed during a pass is also 
queryable.  The following entrypoints are used to specify arithmetic instructions within the pixel shader. 
 

void glColorFragmentOpxATI (enum op, uint dst, uint dst_mask, uint dst_scale
uint arg1, uint arg1_repl, uint arg1_mod
. . . )

void glAlphaFragmentOpxATI (enum op, uint dst, uint dst_mask, uint dst_scale
uint arg1, uint arg1_repl, uint arg1_mod
. . .)

    op can be one of  GL_ADD_ATI, GL_SUB_ATI, GL_MUL_ATI, GL_MAD_ATI, GL_LERP_ATI,

GL_MOV_ATI, GL_CND_ATI, GL_CND0_ATI, GL_DOT3_ATI, GL_DOT4_ATI, GL_FRAC_ATI or 
GL_DOT2_ADD_ATI. 
 
   dst can be one of  GL_REG_0_ATI, GL_REG_1_ATI, GL_REG_2_ATI . . . GL_REG_N-1_ATI where N is
GL_NUM_FRAGMENT_REGISTERS 
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   dst_mask can be any bitwise or’ing of GL_RED_BIT_ATI, GL_GREEN_BIT_ATI, GL_BLUE_BIT_ATI or

GL_ALPHA_BIT_ATI.  For no masking, use GL_NONE_ATI. 
 
   dst_scale can be GL_SATURATE_ATI optionally bitwise or’d with one of GL_2X_BIT_ATI, GL_4X_BIT_ATI,

GL_8X_BIT_ATI, GL_HALF_BIT_ATI, GL_QUARTER_BIT_ATI or GL_EIGHTH_BIT_ATI.  For no saturation or 
scaling, use GL_NONE_ATI. 
 
   argn can be one of  GL_REG_0_ATI, GL_REG_1_ATI, GL_REG_2_ATI . . . GL_REG_N-1_ATI,
GL_CON_0_ATI, GL_CON_1_ATI, GL_CON_2_ATI . . . GL_CON_M-1_ATI, GL_PRIMARYCOLOR or
GL_SECONARYCOLOR_ATI.

where N is GL_NUM_FRAGMENT_REGISTERS_ATI 
where M is GL_NUM_FRAGMENT_CONSTANTS_ATI

 
   argn_repl can be one of  GL_RED_ATI, GL_GREEN_ATI, GL_BLUE_ATI, GL_ALPHA_ATI or GL_NONE_ATI

 
   argn_mod can be GL_COMP or any bitwise or’ing of GL_NEGATE_BIT_ATI, GL_BIAS_BIT_ATI or

GL_2X_BIT_ATI.  For no source modifications, use GL_NONE.
 
   coord can be any integer from 0 to GL_MAX_TEXTURES-1 
 
   map can be any integer from 0 to GL_MAX_TEXTURES-1 
 
 
Argument Replication and Modification 
 
 As noted above, there are four mutually exclusive options for channel replication of arguments.  
Replication is independent of other argument modification. 
 

Alpha Replicate GL_ALPHA Replicates the alpha channel to all colors 
Red Replicate GL_RED Replicates the red channel to all colors 
Green Replicate GL_GREEN Replicates the green channel to all colors 
Blue Replicate GL_BLUE Replicates the blue channel to all colors 

 
 As noted above, there are four additional options for argument modification.  This these may 
happen independent of any replication of the data. 
 

Complement GL_COMP_BIT_ATI Complements y = 1.0 - x 
 

Negate GL_NEGATE_BIT_ATI Negates the value y = -x 
Bias GL_BIAS_BIT_ATI Shifts value down by ½, y = (x-0.5) 
Scale x 2 GL_2X_BIT_ATI Scales input by 2 

 
Note the following rules for combining modifiers: 
 

• GL_RED, GL_GREEN, GL_BLUE and GL_ALPHA are mutually exclusive 
• GL_COMP is exclusive of GL_BIAS, GL_NEGATE and GL_2X 

 
When using multiple argument modifiers, GL_BIAS_ATI happens first, followed by GL_2X_ATI 

and GL_NEGATE_ATI. 
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Write Modifiers 
 
 The following destination modifiers are available to modify the results of the calculation before 
writing them into the destination register: 
 

 
 

Naturally, GL_2X_ATI, GL_4X_ATI, GL_8X_ATI, GL_HALF_ATI, GL_QUARTER_ATI and 
GL_EIGHTH_ATI are mutually exclusive.  GL_SAT_ATI may be bitwise or’d with any of these or used 
alone.  For no scaling or saturation, use GL_NONE_ATI. 
 
Write Masks 
 
 A fully general mask may also be applied to writes to the destination register.  Any bit 
combination of GL_RED_BIT_ATI, GL_GREEN_BIT_ATI, GL_BLUE_BIT_ATI, and GL_ALPHA_BIT_ATI 
may be used to mask writes to the destination.  Note that, as a destination write mask, 
GL_RED_BIT_ATI|GL_GREEN_BIT_ATI|GL_BLUE_BIT_ATI|GL_ALPHA_BIT_ATI is functionally 
equivalent to GL_NONE. 
 The sample fragment shader above uses write masks to compute a 2D texture coordinate from 
the results of two separate calculations.  In that case, the red channel of the register is written with the 
scalar result of N·H and the green channel is set equal to the alpha channel in the bump map.  This is 
result is then as the texture coordinates in a fetch from an (N·H)k map, allowing k to vary across the 
primitive. 
 
Fragment Shader Output 
 

Unlike the ATI_vertex_shader extension, there is no explicit mechanism for specifying the 
output of the fragment shader.  The contents of GL_REG_0_ATI are the output of the fragment shader. 
 
Future Directions 
 

Clearly, programmable real-time 3D graphics is the future.  We’re just beginning to scratch the 
surface of the visual effects that can be achieved with today’s real-time programmable 3D graphics 
models, but we’re already looking at extensions to the functionality outlined here. 

For example, in many cases, it would be desirable for a vertex shader to perform some operations 
on low-polygon pre-tessellated data and perform other operations post-tessellation on the increased 
number of vertices.  Skinning or tweening the control mesh (or input triangulation in the case of Curved 
PN Triangles) of a game character prior to tessellation might be desirable.  Lighting and other “high 
frequency” calculations would then come after surface tessellation.  
 

GL_2X_BIT_ATI Multiply result by 2 
GL_4X_BIT_ATI Multiply result by 4 
GL_8X_BIT_ATI Multiply result by 8 
GL_HALF_ATI Divide result by 2 
GL_QUARTER_ATI Divide result by 4 
GL_EIGHTH_ATI Divide result by 8 

GL_SAT_ATI Saturate (clamp 0..1) 
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Conclusion 
 

We’ve outlined the behavior of two programmable shading extensions that have been designed 
to be implementable in hardware in the near term.  The APIs are designed to attract multivendor support 
and to remain in place between multiple generations of hardware implementation.  Aside from outlining 
the behavior of these extensions, we have provided some insight into what motivated many API design 
decisions. 
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Online References 
 
ATI_vertex_shader and ATI_fragment_shader specs are online: http://www.ati.com/online/sdk 
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